Does compensatory neural activity survive old-old age?

نویسندگان

  • Kirk R. Daffner
  • Xue Sun
  • Elise C. Tarbi
  • Dorene M. Rentz
  • Phillip J. Holcomb
  • Jenna L. Riis
چکیده

One mechanism that may allow older adults to continue to successfully perform certain cognitive tasks is to allocate more resources than their younger counterparts. Most prior studies have not included individuals beyond their 70s. Here, we investigated whether compensatory increases in neural activity previously observed in cognitively high-performing young-old adults would continue into old-old age. Event-related potentials were recorded from 72 cognitively high performing subjects, aged 18 to 96 years old, while they participated in a subject-controlled novelty oddball paradigm in which they determined viewing duration of standard, target, and novel visual stimuli. Compared to young and middle-aged subjects, both young-old and old-old subjects exhibited an impairment of preliminary mismatch/match detection operations, indexed by an attenuated anterior N2 component. This may have placed a greater burden on the subsequent controlled decision-making process, indexed by the P3, necessitating the allocation of more resources. The relationship between age and resource allocation, as measured by P3 amplitude, from midlife to very old age (45-96 years old) followed an inverted u-shaped curve (quadratic function). It peaked between the late 60s and early 70s. Thereafter, there was an inverse relationship between age and resource appropriation. This relationship remained significant after controlling for differences in task performance and MMSE. Examining the size of the P3 component across different age groups suggests that although cognitively high performing adults in their early 80s exhibit a reduction in P3 amplitude, they have a relatively well-preserved capacity to appropriate resources. However, by the late 80s, there is a robust decline (relative to young-old adults) in the size of the P3. Our results indicate that when carrying out controlled processing linked to directing attention to salient events, cognitively high performers reach the boundary of their capacity, albeit relatively late in life. This limits their ability to appropriate additional resources as compensatory activity for age-related impairments in earlier visual processing, and suggests that such a mechanism does not tend to "survive" old-old age.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compensatory neural activity distinguishes different patterns of normal cognitive aging

Most cognitive neuroscientific research exploring the nature of age-associated compensatory mechanisms has compared old adults (high vs. average performers) to young adults (not split by performance), leaving ambiguous whether findings are truly age-related or reflect differences between high and average performers throughout the life span. Here, we examined differences in neural activity (as m...

متن کامل

Ic-p3-176 What Goes Up, Must Come Down: Compensatory Neural Activity among the Very Old

Background: Understanding factors that contribute to successful cognitive aging has become increasingly important as a growing portion of the population lives to very old age. Our research has focused on different patterns of cognitive aging by using electrophysiologic and behavioral measures. Previously, we demonstrated (e.g., NeuroImage, 2008; 39(1)) that cognitively high-functioning younger-...

متن کامل

Dynamics of alaninaminotransferase activity in subcellular fractions of different areas of brain cortex and hypothalamus in postnatal ontogenesis under protein-free feeding regime and after its withdrawal

Total and specific activities of alaninaminotransferase (Al-AT) were determined in general tissues, mitochondrial and cytosol fractions of visual, orbital, motor, limbic areas of brain cortex and hypothalamus of three-month old and one-year old rats under 10-20 days and 30 days protein deprivation and under recovery of normal food regime during the same terms. It was found out that Al-AT activi...

متن کامل

Dynamics of alaninaminotransferase activity in subcellular fractions of different areas of brain cortex and hypothalamus in postnatal ontogenesis under protein-free feeding regime and after its withdrawal

Total and specific activities of alaninaminotransferase (Al-AT) were determined in general tissues, mitochondrial and cytosol fractions of visual, orbital, motor, limbic areas of brain cortex and hypothalamus of three-month old and one-year old rats under 10-20 days and 30 days protein deprivation and under recovery of normal food regime during the same terms. It was found out that Al-AT activi...

متن کامل

Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation.

The neural underpinnings of age-related memory impairment remain to be fully elucidated. Using a subsequent memory face-name functional MRI (fMRI) paradigm, young and old adults showed a similar magnitude and extent of hippocampal activation during successful associative encoding. Young adults demonstrated greater deactivation (task-induced decrease in BOLD signal) in medial parietal regions du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 54 1  شماره 

صفحات  -

تاریخ انتشار 2011